

Condensate modulator sequesters β-Catenin into depot condensates and demonstrates competitive anti-tumor activity in animal models of colorectal cancer

Costa Salojin, Doug Baumann, Adam Talbot, Kip West, Thomas Durand-Reville, Isaac Klein, Ann Boija Affiliations: Dewpoint Therapeutics
Poster number: LB199

Introduction

Constitutive activation of β -Catenin is a well-known driver of malignancy. However, traditional drug discovery approaches have proven challenging and largely unsuccessful in identifying therapeutic agents to modulate the function of β -Catenin. Biomolecular condensates have recently been demonstrated to play key roles in regulating most cellular processes and biological pathways by compartmentalizing biomolecules in membrane-less organelles, thus lending novel opportunities to drug previously "undruggable" targets (1).

Here, we leverage condensate biology to discover small molecules that reverse the hyperactive function of β -Catenin in colorectal cancer by entrapping it into depot condensates (2). We developed a high-throughput phenotypic assay that identifies β -Catenin condensate-modifying compounds (c-mods). Through condensate screening and functional secondary assays, we identified and optimized c-mods that: sequester of β -Catenin into depots, induce selective cancer cell killing, and reverse oncogenic β -Catenin specific gene expression programs.

C-mods identified in our screen are effective in genetically diverse colorectal cancers and a range of Wnt-associated cancers, providing the opportunity to treat a broad patient population. Furthermore, oral dosing of a lead c-mod demonstrates competitive tumor growth inhibition as a single agent in xenograft and PDX models of colorectal cancer. Taken together, these results highlight the promise of condensate biology in drugging previously intractable high-value targets in oncology and developing novel treatments for patients suffering from diseases of high unmet need.

Dewpoint's state of the art c-mod discovery platform

- Condensate target ID
- Zero-shot hit discovery
- Functional prediction
- Closed-loop SAR
- •>300M images
- •>370K compounds
- •>2B cell phenotypes

AI-powered end-to-end experimental platform.

References

- 1. Mitrea, D.M., Mittasch, M., Gomes, B.F., Klein, I.A., Murcko, M.A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022;21:841–862.
- 2. Bernkopf D. B., Daum G., Brückner M., Behrens J. Sulforaphane inhibits growth and blocks Wnt/β-catenin signaling of colorectal cancer cells. Oncotarget 2018;9:33982-33994.
- 3. Zamudio, A.V., Dall'Agnese, A., Henninger, J.E., Manteiga, J.C., Afeyan, L.K., Hannett, N.M., et al., Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Mol Cell 2019;5:753-766.e6

Therapeutic approach

Exploit principles of condensate biology to treat colorectal cancer

- Constitutive activation of β-Catenin in colorectal cancer causes transcriptional reprogramming and uncontrolled cell proliferation
- C-mods modulate β -Catenin activation by inducing nuclear depot formation
- Immunofluorescent (IF) of β -Catenin is used to monitor depot formation
- The quantifiable phenotype enables high throughput, high content imaging screening and structure-activity relationship studies to drive drug discovery

Selective inhibition of β -Catenin in colorectal cancer cells

Sequestration of β -Catenin into condensates in malignant cells

IF images of malignant vs. healthy colon cells upon c-mod treatment.

Selective cancer cell killing

Cell viability of malignant vs. healthy colon cells upon c-mod treatment.

Specific modulation of β -Catenin driven genes

Wnt/β-Catenin signaling

GSEA plots showing selective down-regulation of Wnt/ β -Catenin and LEF1 target genes in colorectal cancer cells when treated with depot-inducing c-mod.

Potency across indications and anti-tumor activity in vivo

 β -Catenin c-mod is active in a broadrange of Wnt-associated cancers

Cell viability assay of 99 cancer cell lines upon lead series c-mod treatment.

β-Catenin c-mod demonstrates anti-tumor activity *in vivo*

Model	β-Catenin pathway alteration	c-mod response
CRC PDX	High wt β-Catenin; APC mut; Axin2 high	Υ
НСТП6	β-Catenin/KRAS GoF, Axin2 LoF	Υ
COLO320	APC/TP53 LoF	Υ
DLD1	APC mut, KRAS GoF	Υ
CRC PDX	High wt β-Catenin; APC mut; KRAS GoF	Υ
CRC PDX	High wt β-Catenin; APC mut; KRAS GoF	Υ
NCI H460	KRAS GoF	Υ

*CRC = colorectal; LoF = loss of function; GoF = gain of function; wt = wild type; mut = mutant

Profound effects in colorectal cancer PDX model

Lead series c-mod induces tumor growth stasis in PDX model derived from heavily pretreated CRC patient with high β -Catenin expression

Summary

By building on principles of condensate biology and employing high-throughput phenotypic screening we have identified novel β-Catenin-specific small molecule inhibitors (c-mods) that demonstrate:

- Robust modulation of Wnt/β-Catenin regulated signaling
- Potent cancer cell-specific cytotoxicity across a broad range of Wnt-driven cancer types
- In vivo anti-tumor activity in multiple PDX and CDX cancer models

Together these data underline the potential of leveraging condensate biology to drive drug discovery and supports the continued development of β -Catenin c-mods for the treatment of Wnt-driven cancers.